等温淬火对 35CrMnSi 组织与性能的影响

黄圣玲1,李威2

1. 辽宁工程技术大学材料科学与工程系,辽宁阜新(123000) 2. 北方重工沈阳矿山机械集团,沈阳(110000)

E-mail: <u>huangshengling0909@163.com</u>, <u>liwei99405@163.com</u>

摘 要:本文通过确定淬火温度、等温温度,研究了不同等温时间下 35CrMnSi 钢的显微组织、冲击韧性、硬度和抗拉强度变化规律。结果表明:等温时间为 5分钟时,得到了 $B_{\tau}+M$ 复相组织比单相马氏体组织性能优越,可得到较优良的机械性能。

关键词: 35CrMnSi, 等温淬火, B F+M 复相组织

1. 引言

截齿是采煤机的截割刀具,是采煤机的易损件。截齿性能要求具有强度高、耐磨性高、寿命长等特点。目前国内截齿多采用 35CrMnSi 钢制造齿体,经淬火回火后使用,由于其强韧性和耐磨性不高,使截齿的使用寿命降低,采煤机效率降低,采煤成本增加。因此,研究截齿的截割性能、强度、可靠性及寿命对降低采煤截齿消耗量,提高劳动生产率,推广采煤机械化,减轻井下工人的劳动强度等都是很有意义的。为提高齿体机械性能,减少井下运行时磨损、弯曲及折断现象。本文研究了 35CrMnSi 钢复合组织(B F+M)机械性能及确定最佳热处理工艺。

2. 实验材料、设备及实验方法

2.1 实验材料

本文选择常用的 35CrMnSi 钢为研究材料,其化学成分见表 1,其 Ac_3 温度为 830°C,Ms 点温度为 330°C。将 35CrMnSi 钢棒料改锻成试样毛坯,退火后加工成标准拉伸试样和冲击试样。

表 1 35CrMnSi 钢的化学成分 Tab. 1 The Chemistry composition of 35CrMnSi steel

化学元素	С	Mn	Si	Cr
含量/%	0.35	0.95	1.23	1.22

2.2 实验设备及实验方法

为了选择淬火加热温度,将试样在 SX2-8-10 型中温箱式电阻炉中加热到 850℃、860℃ 和 870℃,保温时间均为 20min,冷却方式为油冷。

为了确定等温温度,将经过 850℃×20min 加热的试样放在硝盐中等温,等温温度分别 选择为 320℃、330℃、340℃和 350℃,等温时间为 70s,冷却方式采用油冷。

为了了解等温时间对组织的影响,将经过 850℃×20min 处理后的式样分别在等温温度为 340℃的硝盐浴中等温 30 s、50 s、70 s、100 s,冷却方式采用油冷。

将经过上述处理后的试样分别进行磨制、抛光和腐蚀制成金相试样,并在 XJL-02 型立式金相显微镜上观察金相组织、照相。

根据淬火温度,等温温度试验结果,确定热处理工艺(表2)。

表 2 35CrMnSi 钢热处理工艺 Tab. 2 The heat treatment technology of 35CrMnSi steel

编号	等温淬火加热规范	淬火介质	回火工艺
1	850°C×20min		
2	850°C×20min+340°C×3min		
3	850°C×20min+340°C×5min	油	220°C×2 h
4	850°C×20min+340°C×10min		
5	850°C×20min+340°C×15min		

将经过热处理的试样进行机械性能对比试验。在 HR-150T 型洛氏硬度计上测定钢的洛氏硬度;在 JB-30 型冲击试验机进行冲击韧性试验;在 WE-30 型液压式万能试验机上进行拉伸试验,并测定其抗拉强度,延伸率及断面收缩率则由拉断的试样对接后测得。

3. 实验结果及分析

3.1 加热温度对 35CrMnSi 钢显微组织的影响

将试样进行了不同的淬火温度处理后,其平均弦长和硬度如表 3 所示:

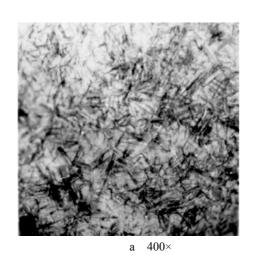
表 3 35CrMnSi 钢淬火后晶粒的平均弦长和硬度 Tab.3 The mean chord length and rigidity of 35CrMnSi steel after quench

热处理工艺	平均弦长/mm	硬度 HRC
850°C×20min	0.2032	55.3
860°C×20min	0.2052	55.2
870°C×20min	0.2176	55.0

由表 3 可以看出:随着淬火温度下降,晶粒平均弦长有所下降,其硬度也有所降低。这说明形成奥氏体晶粒的大小与加热温度有直接关系。在加热时奥氏体的形成过程可以分为形核和长大二个阶段,相变时,新相形成并不是在体系的每个点上同时发生的,而是在某些小区域内开始,而后扩展到整体。一般固态相变中,新相的形核功在晶界或相界比在母相晶粒内小。因此新相晶核总是优先在两相交界面上或晶界上出现。对于原始组织为铁素体加珠光体的 35CrMnSi 钢,在临界区加热时奥氏体形成第一步是在铁素体-珠光体交界面上形核,而后奥氏体晶核向 α 及 Fe₃C 两个方向长大。随等温时间延长奥氏体逐渐长大,铁素体和渗碳体也逐渐消失^[1]。加热温度越高,晶粒长大越快,最后得到的晶粒也越粗大。试样从 850℃、860℃和 870℃淬火后的弦长数值可以看出:晶粒的弦长虽有一定变化,但相差不大,查表晶粒均为为 5 级。这是由于 35CrMnSi 钢为本质细晶粒钢,晶粒长大的趋势不大;钢中合金元素铬和硅,阻碍奥氏体晶粒长大,也使得奥氏体组织细化。由表 3 还可以看到,850℃、860℃和 870℃淬火后的洛氏硬度变化不大,综合晶粒大小和洛氏硬度两项性能指标,本试验确定等温淬火温度为 850℃。

3.2 等温温度对 35CrMnSi 钢显微组织及硬度的影响

不同等温温度等温处理后试样的硬度如表 4:


表 4 35CrMnSi 钢等温淬火后贝氏体量及硬度

Tob 4	The beinitie content	and maidite.	af 25CmMmCi a	tool often quetemanning
1404	The Dainille Content	and Heldity	OL SOCHVIIISES	teel after austempring

热处理工艺	硬度 HRC
850°C×20min+320°C×70s	53.6
850°C×20min+330°C×70s	53.5
850°C×20min+340°C×70s	53.2
850°C×20min+350°C×70s	52.2

从表4中可以看出:硬度值差别很小,硬度随着等温温度的升高降低,这是由于随等温温度升高,贝氏体体含量有一定的增多,使马氏体含量减少,硬度下降。随着等温温度的升高,贝氏体在向奥氏体晶内长大的过程中,向邻近的奥氏体中排碳,等温温度越高,碳原子扩散速度越大,贝氏体基体含碳量愈低,使硬度随温度升高而下降;而未转变奥氏体的含碳量增多,稳定性增高,残余奥氏体的数量增多,使硬度随温度升高而下降^[2]。

不同等温温度等温处理后的金相组织如图 1 所示:

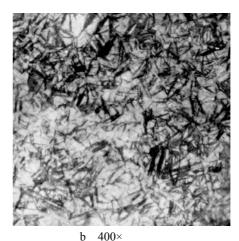


图 1 35CrMnSi 钢等温后的组织形貌

Fig.1 The structure topography of 35CrMnSi steel after austempring a 850°C×20min+320°C×70s b 850°C×20min+340°C×70s

从图1金相显微照片中可以看出: 当等温温度为320℃时,其下贝氏体含量相对较少。这是由于当等温淬火温度较低时,相变驱动力很大,贝氏体将在过冷奥氏体中的贫碳区沿惯习面切变,大量生核。但是由于温度很低,碳的扩散能力小,不能在奥氏体中作长距离扩散。因此在较低的等温淬火温度下,贝氏体转变较不充分,组织较少。当等温温度升高到340℃时,下贝氏体含量相对较多,这是由于随着等温温度的升高,单一奥氏体发生相变的驱动力虽变小,但温度较高,碳扩散较快,下贝氏体含量相对较多^[3]。

从以上实验结果及分析可以看出: 等温温度对贝氏体含量影响不大, 硬度也下降的不多, 考虑工厂实际操作的要求, 取 Ms 以上温度 340℃作为等温温度。

3.3 等温时间对 35CrMnSi 钢显微组织及硬度的影响

不同等温时间等温处理后试样的硬度如表 5 所示:

表 5 35CrMnSi 钢等温淬火后贝氏体体含量及硬度

Tab 5	The bainiti coo	ntant and rigidity	of 25CrMnSi ctor	el after austempring
rab.5	The bainiti cco	ntent and rigidity	OL SOUTIVINGLABLE	ei aiter austembring

热处理工艺	硬度 HRC
850°C×20min+340°C×30s	55.0
850°C×20min+340°C×40s	54.5
850°C×20min+340°C×50s	54.5
850°C×20min+340°C×70s	53.2
850°C×20min+340°C×100s	50.8

从表 5 中可以看出随着时间的升高,贝氏体含量有明显的变化,等温时间是决定贝氏体含量的主要因素。其显微组织如下图 2 所示,

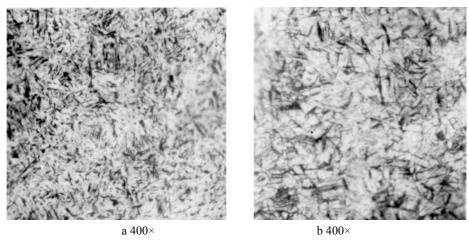


图 2 35CrMnSi 钢等温后的组织形貌

Fig. 2 The structure topography of 35CrMnSi steel after austempring a $850^{\circ}\text{C} \times 20\text{min} + 340^{\circ}\text{C} \times 30\text{s}$ b $850^{\circ}\text{C} \times 20\text{min} + 340^{\circ}\text{C} \times 50\text{s}$

将图2与图1中(b)对比可以看出: 等温时间较短时,贝氏体中组织较少,这是由于过冷奥氏体中存在碳的非均匀分布以及碳、硅偏聚现象,在晶界内和晶界附近均存在贫碳区,贝氏体将在过冷奥氏体中的贫碳区沿惯习面切变,大量生核。但是由于时间短,碳的扩散能力小,不能在奥氏体中作长距离扩散,因此贝氏体组织含量较少^[3]。随着等温时间的延长,下贝氏体含量相对较多。这是由于随着时间的延长,碳扩散的较充分,使贝氏体充分长大,所以含量较多。

不同等温时间等温处理后试样硬度的变化趋势如下图3所示:

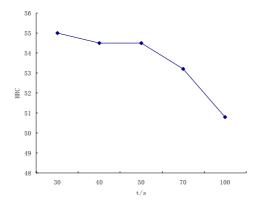


图 3 35CrMnSi 钢等温淬火后硬度

Fig. 3 The rigidity of 35CrMnSi steel after austempring

由图3可以看出:硬度随着时间的延长,有明显的下降趋势,这是因为随着时间的延长, 贝氏体含量显著增多,等温后试样在空冷过程中,未转变贝氏体的残余奥氏体转变为马氏体, 贝氏体的硬度低于马氏体,致使硬度下降。

由以上试验结果及分析可以看出,等温时间对贝氏体含量影响较大,为了确定较为合适的热处理工艺,按表 4 中的工艺对 35CrMnSi 钢试样进行了热处理,并测试了冲击韧性、硬度、抗拉强度及塑性。

3.4 等温时间对 35CrMnSi 钢冲击韧性及硬度的影响

按表 4 中的工艺对 35CrMnSi 钢试样进行了热处理,并测试了其冲击韧性及硬度,其结果见表 6 所示。

1ab.2-4 The	1ab.2-4 The impact toughness and rigidity of 35Crivins1 steel after austempring		
试样编号	冲击韧性/J·cm ⁻²	硬度 HRC	
1	49.80	54.3	
2	54.40	48.1	
3	71.11	48.5	
4	67.68	45.9	
5	62 40	45.5	

表 6 35CrMnSi 钢等温处理后冲击韧性和硬度
Tab 2.4 The import toughness and rigidity of 35CrMnSi steel after sustame

从表 6 中可以看出: 复相组织的冲击韧性均高于马氏体单相组织, 5 分钟时冲击韧性增加了 43%。这是由于: 低合金结构钢在贝氏体等温淬火形成的 B-M 组成物的外围部分主要是残余奥氏体, 其塑性变形抗力较低, 当裂纹扩展至 B-M 附近时, 通过塑性变形产生而引起裂纹尖端应力发生松驰,或者通过塑性变形而引起奥氏体向马氏体转变,并伴随体积膨胀,从而使裂纹尖端应力发生松驰,使裂纹不能穿过 B-M 而向别的方向扩展,结果增大了裂纹扩展的路程,使消耗的能量增加,使钢的韧性得到提高^[4]。

由表 6 作出 35CrMnSi 钢等温处理后冲击韧性和硬度的变化趋势,如图 4 所示:

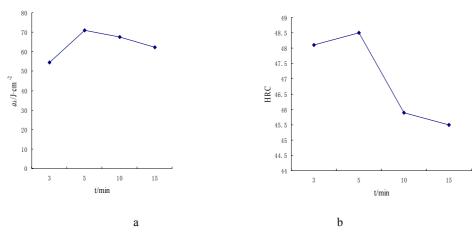


图 4 35CrMnSi 钢等温处理后冲击韧性(a)和硬度(b)

Fig.4 The impact toughness and rigidity of 35CrMnSi steel after austempering

由图4可以看出:随着时间的延长,冲击韧性和硬度在3-5分钟先升高,5-15分钟下降。 这是由于随着时间的延长,贝氏体含量不断增加,当在5分钟左右时,贝氏体和马氏体含量 达到了良好的配合,致使其硬度及冲击韧性都有所提高。该钢在等温过程中先形成针状下贝 氏体优先于马氏体从奥氏体中析出,分割原奥氏体晶粒,将奥氏体分割成较小的区域,使随

中国科技论文在线

后出现的马氏体被限制在较小的范围内,从而细化了马氏体组织,当裂纹扩展到马氏体-贝 氏体边界上时方向发生改变,从而增加了裂纹扩展的阻力。消耗的能量增加,从而提高了钢 的韧性。

3.5 等温淬火时间对 35CrMnSi 钢拉伸性能的影响

按表 4 中的工艺对 35CrMnSi 钢试样进行了热处理并测试了拉伸性能指标,其结果见表 7 所示。

表 7 35CrMnSi 钢等温处理后拉伸性能

Tab.2-5 The stretch strength of 35CrMnSi steel after austempring

试样编号	$\sigma_b/{ m Mpa}$	δ/%	Ψ/%
2	1551.6	9.0	21.1
3	1485.3	10.4	31.3
4	1453.5	10.7	32.7
5	1456.3	9.9	32.3

由表 7 作出 35CrMnSi 钢等温处理后冲击韧性和硬度的变化趋势其拉伸性能变化如图 5 所示:

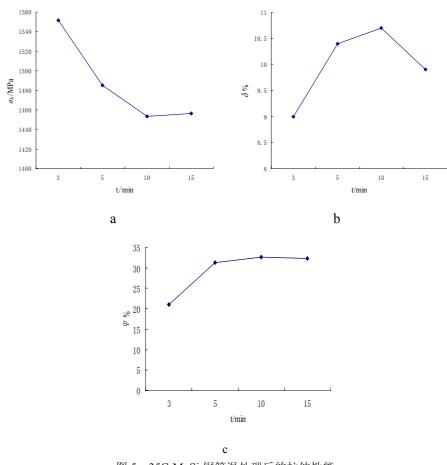


图 5 35CrMnSi 钢等温处理后的拉伸性能

Fig. 5 The stretch strength of 35CrMnSi steel after austempring a 35CrMnSi 钢等温处理后打抗拉强度 b 35CrMnSi 钢等温处理后的伸长率 c 35CrMnSi 钢等温处理后的断面收缩率

从图5中可以看出:随着等温时间的延长,抗拉强度缓慢下降,出现上述变化趋势的主

要原因是经不同的时间等温淬火后,组织中马氏体和贝氏体的相对含量不同造成的,等温时间较短时,马氏体所占比例大,随着等温时间的延长,贝氏体的含量增加,故强度随等温时间的延长呈下降趋势^[4]。

在较短的时间内,塑性都不高,随时间的增加,塑性上升。这是因为时间较短时,形成下贝氏体组织的量较少,有部分马氏体及残余奥氏体存在,因而塑性不高,等温时间增加,下贝氏体量增加,组织中保留有一定数量的残余奥氏体,塑性上升。

由此可见,碳钢在最佳等温温度等温,有一个最佳等温时间,而等温时间的确定应是在 贝氏体完全转变后再加上适当的回火时间,碳钢等温淬火获得全部下贝氏体组织后,适当延 长保温时间,使其很大程度上经受回火,可得到高强度与高塑性的最佳配合。

4. 结论

- (1) 淬火温度从 850℃升高到 870℃, 35CrMnSi 钢晶粒的平均弦长增加不大, 硬度变化也不大。
- (2) 在320℃~350℃等温时,随等温温度升高,贝氏体含量和硬度变化不大;在340℃等温时,随等温时间的延长,贝氏体含量增加,硬度明显下降。
- (3) 采用 850℃淬火、340℃等温时,可以使 35CrMnSi 钢获得马氏体+下贝氏体+残余奥氏体的复合组织。当等温时间为 5 分钟时,得到的复相组织比单相马氏体组织性能优越,可得到较优良的机械性能。

参考文献

- [1] 马鸣图,(等).双相钢物理冶金和力学冶金[J].冶金工业社,1988,6.
- [2] 云广鹏.铸造技术.Vol.27 No.4Apr.2006)
- [3] 赵金兰,李勇,车广东,李进福.李洪波等温淬火温度和时间对ZG30SiMnCr性能和组织的影响研究.造技术.2007年2月.167-170
- [4] 李志宏, 唐华. 壳体用钢30CrMnSiNi2A的强韧化热处理研究. 热处理工艺. 2005 No. 11 38-39

Effects of Austempering on the Microstructure and Properties of 35CrMnSi Steel

Huang Shengling¹, Li Wei²

- 1. Department of Materials Science and Engineering, Liaoning Engineering Technology University, fuxin, Liaoning (123000)
 - 2. Northern Heavy Industry Shenyang mining machinery group, shenyang(110000)

Abstract

By determining quenching temperature and isothermal temperature, the change of microstructure, impact toughness, hardness and tensile strength on different isothermal time are studied. The results showed: isothermal time for five minutes, the B $_{\rm T}$ +M composite structure are obtained and have superior performance than the single-phase martensite, and have better performance.

Keywords: 35CrMnSi, austempering, Bainite and martensite composite structure